Senior Machine Learning Engineer (Python, Spark, MLOPS)
Company: Capital One
Location: Fredericksburg
Posted on: November 12, 2024
Job Description:
Center 1 (19052), United States of America, McLean,
VirginiaSenior Machine Learning Engineer (Python, Spark, MLOPS)As a
Capital One Machine Learning Engineer (MLE), you'll be part of an
Agile team dedicated to productionizing machine learning
applications and systems at scale. You'll participate in the
detailed technical design, development, and implementation of
machine learning applications using existing and emerging
technology platforms. You'll focus on machine learning
architectural design, develop and review model and application
code, and ensure high availability and performance of our machine
learning applications. You'll have the opportunity to continuously
learn and apply the latest innovations and best practices in
machine learning engineering. -What you'll do in the role: -
- The MLE role overlaps with many disciplines, such as Ops,
Modeling, and Data Engineering. In this role, you'll be expected to
perform many ML engineering activities, including one or more of
the following:
- Design, build, and/or deliver ML models and components that
solve real-world business problems, while working in collaboration
with the Product and Data Science teams. -
- Inform your ML infrastructure decisions using your
understanding of ML modeling techniques and issues, including
choice of model, data, and feature selection, model training,
hyperparameter tuning, dimensionality, bias/variance, and
validation).
- Solve complex problems by writing and testing application code,
developing and validating ML models, and automating tests and
deployment. -
- Collaborate as part of a cross-functional Agile team to create
and enhance software that enables state-of-the-art big data and ML
applications. -
- Retrain, maintain, and monitor models in production.
- Leverage or build cloud-based architectures, technologies,
and/or platforms to deliver optimized ML models at scale.
- Construct optimized data pipelines to feed ML models. -
- Leverage continuous integration and continuous deployment best
practices, including test automation and monitoring, to ensure
successful deployment of ML models and application code. -
- Ensure all code is well-managed to reduce vulnerabilities,
models are well-governed from a risk perspective, and the ML
follows best practices in Responsible and Explainable AI. -
- Use programming languages like Python, Scala, or Java. -Basic
Qualifications:
- Bachelor's degree
- At least 4 years of experience programming with Python, Scala,
or Java (Internship experience does not apply)
- At least 3 years of experience designing and building
data-intensive solutions using distributed computing -
- At least 2 years of on-the-job experience with an industry
recognized ML frameworks (scikit-learn, PyTorch, Dask, Spark, or
TensorFlow) -
- At least 1 year of experience productionizing, monitoring, and
maintaining models -Preferred Qualifications:
- 1+ years of experience building, scaling, and optimizing ML
systems
- 1+ years of experience with data gathering and preparation for
ML models
- 2+ years of experience developing performant, resilient, and
maintainable code
- Experience developing and deploying ML solutions in a public
cloud such as AWS, Azure, or Google Cloud Platform
- Master's or doctoral degree in computer science, electrical
engineering, mathematics, or a similar field -
- 3+ years of experience with distributed file systems or
multi-node database paradigms
- Contributed to open source ML software -
- Authored/co-authored a paper on a ML technique, model, or proof
of concept
- 3+ years of experience building production-ready data pipelines
that feed ML models -
- Experience designing, implementing, and scaling complex data
pipelines for ML models and evaluating their performance -At this
time, Capital One will not sponsor a new applicant for employment
authorization for this position.Capital One offers a comprehensive,
competitive, and inclusive set of health, financial and other
benefits that support your total well-being. Learn more at the -.
Eligibility varies based on full or part-time status, exempt or
non-exempt status, and management level.This role is expected to
accept applications for a minimum of 5 business days.No agencies
please. Capital One is an equal opportunity employer committed to
diversity and inclusion in the workplace. All qualified applicants
will receive consideration for employment without regard to sex
(including pregnancy, childbirth or related medical conditions),
race, color, age, national origin, religion, disability, genetic
information, marital status, sexual orientation, gender identity,
gender reassignment, citizenship, immigration status, protected
veteran status, or any other basis prohibited under applicable
federal, state or local law. Capital One promotes a drug-free
workplace. Capital One will consider for employment qualified
applicants with a criminal history in a manner consistent with the
requirements of applicable laws regarding criminal background
inquiries, including, to the extent applicable, Article 23-A of the
New York Correction Law; San Francisco, California Police Code
Article 49, Sections 4901-4920; New York City's Fair Chance Act;
Philadelphia's Fair Criminal Records Screening Act; and other
applicable federal, state, and local laws and regulations regarding
criminal background inquiries.If you have visited our website in
search of information on employment opportunities or to apply for a
position, and you require an accommodation, please contact Capital
One Recruiting at 1-800-304-9102 or via email at . All information
you provide will be kept confidential and will be used only to the
extent required to provide needed reasonable accommodations.For
technical support or questions about Capital One's recruiting
process, please send an email to Capital One does not provide,
endorse nor guarantee and is not liable for third-party products,
services, educational tools or other information available through
this site.Capital One Financial is made up of several different
entities. Please note that any position posted in Canada is for
Capital One Canada, any position posted in the United Kingdom is
for Capital One Europe and any position posted in the Philippines
is for Capital One Philippines Service Corp. (COPSSC).
Keywords: Capital One, Washington DC , Senior Machine Learning Engineer (Python, Spark, MLOPS), Engineering , Fredericksburg, DC
Didn't find what you're looking for? Search again!
Loading more jobs...